张跃钢

    教授 

 

    北京市海淀区清华大学

    纳米楼408室

    北京 100084 

 

    电话:010-62772769

    传真:010-62789851

    yuegang.zhang@tsinghua.edu.cn


    个人网页:http://www.ygzhanggroup.com/

个人简历

学习经历:
1981年09月- 1986年07月中国清华大学物理系理学学士
1986年08月- 1989年06月中国清华大学物理系固体物理硕士
1993年10月- 1996年09月日本东京大学工学院材料科学博士
工作经历:
1989年08月- 1993年09月中国清华大学物理系讲师
1996年09月- 2000年01月日本电气基础研究所研究员
2000年01月- 2002年07月美国斯坦福大学博士后研究员
2002年07月- 2008年08月美国英特尔公司资深研究员,碳纳米管战略研究项目领导人,半导体技术委员会存储器件战略研究分支主席
2008年08月- 2012年09月美国伯克利国家实验室终身研究员
2014年05月-2017年04月中国清华大学物理系双聘教授
2017年04月- 现在中国清华大学物理系长聘教授

主要学术成就

        张跃钢博士现任清华大学物理系长聘教授,中国科学院苏州纳米技术与纳米仿生研究所客座研究员;曾任美国英特尔公司资深研究员、美国伯克利国家实验室终身研究员,国际半导体技术规划(ITRS)新器件及新材料专家工作组成员,美国基础纳米科学年会自组装结构与器件分支主办委员会成员;现兼任“Scientific Reports”, “Graphene”, “Flexible Electronics”,“功能材料”等学术期刊编委;30多家国际学术杂志论文评审专家,美国布鲁克黑文国家实验室功能纳米材料中心评审委员,美国国家科学基金评审委员,美国Keck基金评审委员,法国-伯克利基金评审委员;美国材料学会,化学学会,电化学学会,及IEEE会员;中国化学会第29届理事会理事。

       张跃钢博士先后在国际科学期刊上发表SCI论文100余篇,被引用次数超过9900次(h-index 42);授权专利30余项;为5部专著撰写有关章节;并受邀在20多个国际会议上作过特邀报告。其在国内外从事科学研究工作近20年期间,分别于日本电气基础研究所、斯坦福大学、英特尔公司、美国伯克利国家实验室等从事科学研究工作,先后承担了科研项目十多项,其中担任PI的6项,担任跨国公司研发大项目中小组领导人的3项。 在纳米材料合成与表征、纳米器件制造与测试方面的主要创新成果包括:首次合成了由纳米管和半导体纳米线组成的纳米同轴电缆结构(发表在Science杂志上);首次实现了单层碳纳米管与半导体或金属间的纳米异质结构(发表在Science杂志上),这个研究成果对改善碳纳米管器件的电学接触特性起了重要作用;首次发现了碳纳米管对光照有电学及力学反应,为以后纳米管人工肌肉的研究奠定了基础;首次用实验证明了用化学气相沉积法制备的碳纳米管半径与金属催化颗粒尺寸的对应关系,对碳纳米管生长机理的研究起了重要作用;运用电场对碳纳米管的排列效应实现了器件制备所要求的化学气相沉积纳米管的原位有序生长;首次用化学或生物分子对碳纳米管表面进行非共化键改性,非共化键改性不会影响碳纳米管的电学特性,但仍然可以用来在纳米管上安装蛋白质,纳米晶粒等,对化学或生物传感器至关重要,相关论文被应用次数超过1900次;实现了由单个纳米管与金属纳米颗粒组成的具有单电子灵敏度的纳米闪存器件;利用碳纳米管与SiO2组成的“纳米铅笔”核壳结构纳米探针在压电介质上实现了超高密度数字存储器件;首次提出和实现了用光学捕获方法操作与分离碳纳米管。2008年起在美国伯克利国家实验室开展了石墨烯材料的研究, 首创用化学气相沉积法直接在介电基底上形成单层石墨烯薄膜和纳米带场效应器件阵列;观察了单层石墨烯迪拉克点附近的反常噪声特性;研究了石墨烯纳米带器件的量子局限效应,揭示了石墨烯纳米带的宽度对其输运特性的影响。近年来在锂离子电池、锂硫电池、镁硫电池、超级电容器等电化学能量存储方面的研究也取得了突出进展,相关成果发表在Energy & Environmental Science, J. Am. Chem. Soc., Nano Letters等杂志上,同时应邀撰写了数篇专题综述文章;其中基于氮化石墨烯/硫复合电极材料所设计的锂硫电池循环寿命高达2000次,创造了该类型电池的最高纪录,其比容量、充放电速率也均居于世界领先水平,相关研究成果及论文被C&EN (美国化学学会会刊) 等科技媒体广泛报道(http://cen.acs.org/articles/91/web/2013/12/Three-Ways-Make-High-Energy.htmlhttp://cen.acs.org/articles/92/web/2014/08/Nitrogen-Doped-Graphene-Boosts-Lifetimes.html)。最近,通过自主研发设计原位扫描/透射电镜电化学芯片,实现了其对电极充电过程的实时观测, 相关成果发表在Advanced Energy Materials和Advanced Materials杂志上,同时被Wiley online等科技媒体广泛报道(http://www.materialsviewschina.com/2015/10/lithium-sulfide-battery-by-in-situ-electron-microscopy-and-cycle-stability-control-made-significant-progress/ )。

教学

1987年02月- 1989年07月:清华大学本科生“固体物理”课程,助教

1990年02月- 1993年05月:清华大学本科生“固体物理”课程,主讲老师,64学时/年

研究领域

1. 纳米材料的合成与表征;
2. 纳米器件的设计及微纳加工技术;
3. 锂电池、镁电池、超级电容器等电化学能量存储器件;
4. 原位表征技术;
5. 能源转化的化学物理机理。

奖励、荣誉和学术兼职

2012: 江苏省高层次创新创业人才

2012: 金鸡湖双百人才

2008: 英特尔公司器件研究部门奖。

2004/2005/2006:英特尔公司SRC指导项目奖。

1995/1996:日本学术振兴会特别研究员奖学金。

1995:日本金属学会暨国际先进材料与技术研讨会优秀展示奖。

1991:清华大学一二九青年教师奖。

主要论著

论文目录:

(1) G. Rong, X. Zhang, W. Zhao, Y. Qiu, M. Liu, F. Ye, Y. Xu, J. Chen, Y. Hou, W. Li, W. Duan, and Y. Zhang*, “Liquid-Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution”, Advanced Materials, 1606187 (2017).
(2) A. Subramanian, Z. Pan, G. Rong, H. Li, L. Zhou, W. Li, Y. Qiu, Y. Xu, Y. Hou, Z. Zheng, Y. Zhang*, “Graphene quantum dot antennas for high efficiency Forster resonance energy transfer based dye-sensitized solar cells”, Journal of Power Sources 343, 39-46 (2017).
(3) S. Cheng, J. Wang, H. Lin, W. Li, Y. Qiu, Z. Zheng, X. Zhao, Y. Zhang*, “Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control”, Journal of Materials Science 52, 2442–2451 (2017).
(4) W. Li, M. Liu, J. Wang, Y. Zhang*, “Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon”, Acta Phys. -Chim. Sin.  33, 165-182 (2017).
(5) W. Li, Q. Ma, Z. Zheng, Y. Zhang*, “Preparation of Three-dimensional Nitrogen-doped Carbon Nanoribbon and Application in Lithium/Sulfur Batteries”, Acta Chimica Sinica 75, 225-230 (2017).
(6) G. Rong, X. Zhang, Y. Xu, Y. Zhang*, “In-situ TEM Study of the Liquid-Phase Reaction of Ag Nanowires with a Sulfur Solution”, Acta Chimica Sinica 74, 980-983 (2016).
(7) J. Liu*, S. Xie, Z. Geng, K. Huang, L. Fan, W. Zhou, L. Qiu, D. Gao, L. Ji, L. Duan*, L. Lu, W. Li, S. Bai, Z. Liu, W. Chen, S. Feng*, and Y. Zhang*, “Carbon Nitride Supramolecular Hybrid Material Enabled High-Efficiency Photocatalytic Water Treatments”, Nano Letters 16, 6568–6575, (2016).
(8) Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou, P-C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang*, Y. Cui*, “Efficient solar driven water splitting by nanocone BiVO4-perovskite tandem cells”, Science Advances, 2:e1501764 (2016).
(9) Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu, X. Zhang, M. Liu*, and Y. Zhang*, “Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors”, Nano Energy 26, 610–619 (2016).
(10) F. Ye, M. Liu, X. Zhang, W. Li, Z. Pan, H. Li, S. Zhang, and Y. Zhang*, “Prelithiation of Nanostructured Sulfur Cathode by an ‘On-Sheet’ Solid-State Reaction”, Small 36, 4966-4972 (2016).
(11) Y. Xu, J. Yuan, L. Fei, X. Wang, Q. Bao, Y. Wang, K. Zhang*, and Y. Zhang*, “Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors”, Small 36, 5000-5007 (2016).
(12) L. Lu*, W. Li, L. Zhou, Y. Zhang, Z. Zhang, Y. Chen, J. Liu*, L. Liu, W. Chen, Y. Zhang*, “Impact of size on energy storage performance of graphene based supercapacitor electrode”, Electrochimica Acta 219, 463–469 (2016).
(13) J. Yang, M. Liu, Z. Wei, Z. Pan, Y. Qiu, F. Ye, Y. Yang, X. Zhao, L. Sheng*, Y. Zhang*, “Controlling Electrochemical Lithiation/Delithiation Reaction Paths for Long-cycle Life Nanochain-structured FeS2 Electrodes”, Electrochimica Acta 211, 671–678 (2016).
(14) J. Wang, X. Wang*, H. Li, X. Yang, Y. Zhang, “Intrinsic factors attenuate the performance of anhydride organic cathode materials of lithium battery”, Journal of Electroanalytical Chemistry 773, 22–26 (2016).
(15) J. Wang, S. Cheng, W. Li*, S. Zhang, H. Li, Z. Zheng, F. Li, L. Shi, H. Lin*, Y. Zhang*, “Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation”, Journal of Power Sources 321, 193-200  (2016).
(16) W. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, Y. Xu, F. Ye, M. Liu, L. Zhou, Y. Zhang*, “Synthesis, crystal structure and electrochemical properties of a novel simple-type magnesium electrolyte for magnesium/sulfur batteries”, Angewandte Chemie - International Edition 55, 6406-6410 (2016).
(17) M. Liu, F. Ye, W. Li, H. Li, Y. Zhang*, “Chemical routes toward long-lasting lithium/sulfur cells”, Nano Research 9, 94-116 (2016).
(18) H. Li, X. Yang*, X. Wang*, Y. He, F. Ye, M. Liu, and Y. Zhang*, “A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium/sulfur batteries”, Nanoscale 8, 2395-2402 (2016).
(19) Y. Qiu, G. Rong, J. Yang, G. Li, S. Ma, X. Wang, Z. Pan, Y. Hou, M. Liu, F. Ye, W. Li, Z. W. Seh, X. Tao, H. Yao, N. Liu, R. Zhang, G. Zhou, J. Wang, S. Fan, Y. Cui*, Y. Zhang*, “Highly nitridated graphene-Li2S cathodes with stable modulated cycles”, Advanced Energy Materirals 5, 1501369, (2015).
(20) S. Zhang, M. Liu*, F. Ma, F. Ye, H. Li, X. Zhang, Y. Hou, Y. Qiu,  W. Li,  J. Wang,  J. Wang  and Y. Zhang*, “A high energy density Li2S@C nanocomposite cathode with a nitrogen-doped carbon nanotube top current collector”, Journal of Materials Chemistry A, 3, 18913–18919 (2015).
(21) J. Yang, G. Li, Z. Pan, M. Liu, Y. Hou, Y. Xu, H. Deng, L. Sheng, X. Zhao*, Y. Qiu* and Y. Zhang*, “All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes”, ACS Applied Materials & Interfaces 7, 22172–22180, (2015).
(22) J. Wu, Y. Xu, P. Xu, Z. Pan, S. Chen, Q. Shen, L. Zhan*, Y. Zhang*, W. Ni*, “Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures”, Nanoscale 7, 17529–17537 (2015).
(23) J. Liu*, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, L. Zhou, Z. Liu, W. Chen, L. Liu, S. Feng*, and Y. Zhang*, “A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries” Nano Letters 15, 5137?5142 (2015).
(24) F. Ye, Y. Hou, M. Liu, C. W. Li, X. Yang, Y. Qiu, L. Zhou, H. Li, Y. Xu, and Y. Zhang*, “Fabrication of mesoporous Li2S–C nanofibers for high performance Li/Li2S cell cathodes”, Nanoscale 7, 9472–9476 (2015).
(25) M. Liu, C. Yan, Y. Zhang*, “Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications”, Scientific Reports 5, 8326 (2015).
(26) Z. Pan, Y. Qiu, J. Yang, M. Liu, L. Zhou, Y. Xu, L. Sheng, X. Zhao*, and Yuegang Zhang*, “Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production”, Journal of Materials Chemistry A, 3, 4004–4009 (2015).
(27) H. Li, X. Yang, X. Wang, M. Liu, F. Ye, J. Wang, Y. Qiu, W. Li, Y. Zhang*, “Dense Integration of Graphene and Sulfur via the Soft Approach for Compact Lithium/Sulfur Battery Cathode”, Nano Energy 12, 468–475 (2015).
(28) Y. Qiu, G. Li, Y. Hou, Z. Pan, H. Li, W. Li, M. Liu, F. Ye, X. Yang,* Y. Zhang*, “Vertically Aligned Carbon Nanotubes on Carbon Nanofibers: A Hierarchical Three-Dimensional Carbon Nanostructure for High-Energy Flexible Supercapacitors”, Chemistry of Materials, 27, 1194?1200 (2015).
(29) G. Li, Y. Qiu, Y. Hou, H Li, L. Zhou, H. Deng*, and Yuegang Zhang*, “Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage”, Journal of Materials Chemistry A,3, 1103–1109 (2015).
(30) D. Wang, H. Tian, I. Martin-Fernandez, Y. Yang, T. L. Ren*, and Y. Zhang*, “Large-Scale Fabrication of Graphene-based Electronic and MEMS Devices” (Invited Paper), IEDM (International Electron Devices Meeting) Technical Digest, 382?385, 2014.
(31) J. J. Velasco-Velez, C. –H. Wu , B. –Y. Wang , Y. Sun , Y. Zhang , J. Guo , and M. Salmeron, “Polarized X-ray Absorption Spectroscopy Observation of Electronic and Structural Changes of CVD Graphene in Contact with Water”, The Journal of Physical Chemstry C, 118, 25456–25459 (2014).
(32) Y. Qiu, S. -F. Leung, Z. Wei, Q. Lin, X. Zheng, Y. Zhang, Z. Fan, and S. Yang, “Enhanced Charge Collection for Splitting of Water Enabled by an Engineered Three-Dimensional Nanospike Array”, The Journal of Physical Chemstry C, 118, 22465–22472 (2014).
(33) Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang*: “High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene” Nano Letters 14, 4821?4827 (2014).
(34) Y. Qiu, W. Li, G. Li, Y. Hou, L. Zhou, H. Li, M. Liu, F. Ye, X. Yang, Y. Zhang*: “Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries” Nano Research 7, 1355–1363 (2014).
(35) D. Jiang, W. Zhou, X. Zhong, Y. Zhang, and X. Li, “Distinguishing Localized Surface Plasmon Resonance and Schottky Junction of Au?Cu2O Composites by Their Molecular Spacer Dependence”, ACS Applied Materials Interfaces 6, 10958?10962 (2014).
(36) Y. C. Qiu, Y. Zhao, X. Yang, W. Li, Z. Wei, Q. Lin, J. Xiao, S. –F. Leung, H. Wu, Y. Zhang*, Z. Fan*, S. Yang*, “Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors”, Nanoscale 6, 3626-3631 (2014).
(37) Y. C. Qiu, S. -F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. -H. Tsui, Y. Zhang, S. Yang*, Z. Fan*, “Efficient Photoelectrochemical Water Splitting with Ultra-thin Film of Hematite on Three-dimensional Nanophotonic Structures” Nano Letters 14, 2123?2129 (2014).
(38) H. Tian, Y. Yang, D. Xie, Y. -L. Cui, W-T. Mi, Y. Zhang*, and T. -L. Ren*, “Wafer-Scale Integration of Graphene-based Electronic, Optoelectronic and Electroacoustic Devices”, Scientific Reports 4, 3598 (2014).
(39) J. J. Velasco-Velez, C. -H. Chuang, H. -L. Han, I. Martin-Fernandez, C. Martinez, W. -F Pong, Y. -R. Shen, F. Wang, Y. Zhang, J. Guo, and M. Salmeron, “In-Situ XAS Investigation of the Effect of Electrochemical Reactions on the Structure of Graphene in Aqueous Electrolytes”, Journal of The Electrochemical Society 160, C445-C450 (2013).
(40) M. K. Song, Y. Zhang*, and E. J. Cairns*, “A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance”, Nano Letters 13, 5891-5899 (2013).
(41) G. Xu, Y. Zhang, X. Duan, A. A. Balandin, K. L. Wang, “Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications,” Proceedings of the IEEE 101, 1670-1688 (2013).
(42) H. Tian, Y. Yang, D. Xie, T. –L. Ren, Y. Shu, H. Sun, C. J. Zhou, X. Liu, L. Q. Tao, J. Ge, C. H. Zhang, and Y. Zhang*, “Laser directed lithography of asymmetric graphene ribbons on a polydimethylsiloxane trench structure”, Physical Chemistry Chemical Physics 15, 6825-6830 (2013).
(43) M. K. Song, E. J. Cairns, and Y. Zhang*, “Lithium-Sulfur Batteries with High Specific Energy: Old Challenges and New Opportunities” (Feature Article), Nanoscale 5, 2186–2204 (2013).
(44) D. Wang, H. Tian, Y. Yang, D. Xie, T. –L. Ren, Y. Zhang*, “Scalable and Direct Growth of Graphene Micro Ribbons on Dielectric Substrates”, Scientific Reports 3, 1348(2013).
(45) H. Tian, H. -Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D.Xie, J. Kang, T. -L.Ren, Y. Zhang,* and H.-S. P. Wong, “Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode”, Nano Letters 13, 651?657 (2013).
(46) K. Cai, M. K. Song, E. J. Cairns, and Y. Zhang*, “Nanostructured Li2S?C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries”, Nano Letters 12, 6474?6479 (2012).
(47) I. Martin-Fernandez, D. Wang, and Y. Zhang*, “Direct Growth of Graphene Nanoribbons for Large-Scale Device Fabrication”, Nano Letters 12, 6175?6179 (2012).
(48) H.-Y. Chen, H. Tian, B. Gao, S. Yu, J. Liang, J. Kang, Y. Zhang, T.-L. Ren, H.-S. P. Wong, “Electrode/Oxide Interface Engineering by Inserting Single-Layer Graphene: Application for HfOx–Based Resistive Random Access Memory”, IEDM (International Electron Devices Meeting) Technical Digest, 489-492 (2012).
(49) J. Li, X. Fang, X. Wang, and Y. Zhang*, “Direct Growth of Vertical ZnO Nanorods on Single-Layer Graphene by Electrochemical Deposition”, Journal of Nanoengineering and Nanomanufacturing 2, 367-370 (2012).
(50) C. Hwang, D. A. Siegel, S. K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, “Fermi velocity engineering in graphene by substrate modification”, Scientific Reports 2, 590 (2012).
(51) L. Zhang , L. Ji, P. Glans , Y. Zhang , J. Zhu and J. Guo, “Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells”, Physical Chemistry Chemical Physics 14, 13670–13675 (2012).
(52) N. Tayebi, A. Yanguas-Gil, N. Kumar, Y. Zhang, J. R. Abelson, Y. Nishi, Q. Ma, and V. R. Rao, “Hard HfB2 tip-coatings for ultrahigh density probe-based storage”, Applied Physics Letters 101, 091909 (2012).
(53) L. Zhang, E. Pollak, W. Wang, P. Jiang, P. Glans, Y. Zhang, J. Cabana, R. Kostecki, C. Chang, M. Salmeron, J. Zhu, J. Guo, “Electronic structure study of ordering and interfacial interaction in graphene/Cu composites”, Carbon 50, 5316–5322 (2012).
(54) L. Ji, H. Xin, T. R. Kuykendall, S. Wu, H. Zheng, M. Rao, E. J. Cairns, V. Battaglia, and Y. Zhang*, “SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage”, Physical Chemistry Chemical Physics 14, 6981–6986 (2012).
(55) L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang*, “Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells”, Journal of the American Chemical Society 133, 18522–18525 (2011).
(56) L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, Y. Zhang*, “Porous Carbon Nanofiber-Sulfur Composite Electrodes for Lithium/Sulfur Cells”, Energy & Environmental Science 4, 5053-5059 (2011).
(57) L. Ji, H. Zheng, A. Ismach, Z. Tan, S. Xun, E. Lin, V. Battaglia, V. Srinivasan, Y. Zhang*, “Graphene/Si Multilayer Structure Anodes for Advanced Half and Full Lithium-Ion Cells”, Nano Energy 1, 164–171 (2012).
(58) C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang,* and D. Ielmini*, “Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires”, Small 7, 2899–2905 (2011). [Featured cover picture in Small, Volume 7, Issue 20, page 2818].
(59) L. Ji, Z. Tan, T. R. Kuykendall, E. J. An, Y. Fu, V. Battaglia, and Y. Zhang*, “Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage”, Energy & Environmental Science 4, 3611-3616 (2011).
(60) L. Ji, Z. Tan, T. R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, and Y. Zhang*, “Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells”, Physical Chemistry Chemical Physics 13, 7170-7177 (2011).
(61) G. Xu, C. M. Torres, Jr., J. Bai, J. Tang, T. Yu, Y. Huang, X. Duan, Y. Zhang, and K. Wang, “Linewidth roughness in nanowire-mask-based graphene nanoribbons”, Applied Physics Letters98, 243118 (2011).
(62) G. Xu, C. M. Torres, Jr., J. Tang, J. Bai, E. B. Song, Y. Huang, X. Duan, Y. Zhang*, and K. Wang*, “Edge Effect on Resistance Scaling Rules in Graphene Nanostructures”, Nano Letters 11, 1082-1086 (2011).
(63) G. Xu, C. M. Torres, Jr., E. B. Song, J. Tang, J. Bai, X. Duan, Y. Zhang*, and K. Wang*, “Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons”, Nano Letters 10, 4590–4594 (2010).
(64) N. Tayebi, Y. Zhang*, R. J. Chen, Q. Tran, R. Chen, Y. Nishi, Q. Ma, and V. Rao, “An ultraclean tip-wear reduction scheme for ultrahigh density scanning probe-based data storage”, ACS Nano 4, 5713–5720 (2010).
(65) G. Xu, J. Bai, C. M. Torres, Jr., E. B. Song, J. Tang,Y. Zhou, X. Duan, Y. Zhang, and K. L. Wang, “Low-noise submicron channel graphene nanoribbons”, Applied Physics Letters 97, 073107 (2010).
(66) G. Xu, C. M. Torres Jr., Y. Zhang*, F. Liu, E. B. Song, M. Wang, Y. Zhou, C. Zeng, and K. L. Wang*, “Effect of spatial charge inhomogeneity on 1/f noise behavior in graphene”, Nano Letters 10, 3312-3317 (2010).
(67) A. Ismach, C. Druzgalski, S. Penwell, Adam Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang*, “Direct chemical vapor deposition of graphene on dielectric surfaces”, Nano Letters 10, 1542-1548 (2010).
(68) M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y. Chueh, Y. Zhang, R. Maboudian, and A. Javey, “Metal-catalyzed crystallization of amorphous carbon to graphene”, Applied Physics Letters 96, 063110  (2010).
(69) N. Tayebi, Y. Narui, N. Franklin, C. P. Collier, K. P. Giapis, Y. Nishi, and Y. Zhang*, “Fully inverted single-digit nanometer domains in ferroelectric films”, Applied Physics Letters 96, 023103  (2010).
(70) J. R. McDonough, J. W. Choi, Y. Yang, F. La Mantia, Y. Zhang*, and Y. Cui, “Carbon nanofibersupercapacitors with large areal capacitances”, Applied Physics Letters 95, 243109 (2009).
(71) X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites”, Nano Letters 9, 467-472 (2009).
(72) N. Teyabi, Y. Narui, R. Chen, C. P. Collier, K. Giapis, Y. Zhang*, “Nanopencil as a wear-tolerant probe for ultrahigh density data storage”, Applied Physics Letters 93, 103112 (2008).
(73) D. Ielmini and Y. Zhang, “Evidence for trap-limited transport in the sub-threshold conduction regime of chalcogenide glasses”, Applied Physics Letters 90, 192102 (2007).
(74) D. Ielmini and Y. Zhang, “Analytical model for sub-threshold conduction and threshold switching in chalcogenide-based memory devices”, Journal of Applied Physics 102, 054517 (2007).
(75) D. Ielmini and Y. Zhang*, “Physics-based analytical model of chalcogenide-based memories for array simulation”, IEDM (International Electron Devices Meeting) Technical Digest, 401-404, 2006.
(76) Y. Zhang*, “Carbon nanotube based nonvolatile memory devices” (invited review paper), International Journal of High Speed Electronics and Systems, 16, 959-975 (2006).
(77) J. Guo, E. Kan, U. Ganguly, Y. Zhang, “High sensitivity and nonlinearity of carbon nanotube charge-based sensors”, Journal of Applied Physics 99, 084301 (2006).
(78) R. J. Chen and Y. Zhang*, “Controlled precipitation of solubilized carbon nanotubes by delamination of DNA”, Journal of Physical Chemistry B 110, 54-57 (2006).
(79) U. Ganguly, J. Guo, E. Kan, Y. Zhang*, “Carbon nanotube based non-volatile memory and charge sensors” (Invited paper), Proceedings of SPIE, Vol. 6003, 60030H (2005).
(80) U. Ganguly, E. Kan, Y. Zhang*, “Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals” Applied Physics Letters 87, 043108 (2005).
(81) S. Tan, H. Lopez, Y. Zhang*, “In-situ Raman and fluorescence monitoring of optically trapped single-walled carbon nanotubes” (Invited paper), Proceedings of SPIE, Vol. 5593, 73-81 (2004).
(82) S. Tan, H. A. Lopez, C. W. Cai, Y. Zhang*, “Optical trapping of single-walled carbon nanotubes”, Nano Letters 4, 1415-1419 (2004).
(83) S. Zhang, X. Hu, H. Li, Z. Shi, K. Yue, J. Zi, Z. Gu, X. Wu, Z. Lian, Y. Zhan, F. Huang, L. Zhou, Y. Zhang, S. Iijima, “Abnormal anti-Stokes Raman scattering of carbon nanotubes”, Physical Review B 66, 035413 (2002).
(84) Y. Zhang, Y. Li, W. Kim, D. Wang, H. Dai, “Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles”, Applied Physics A74, 325-328 (2002).
(85) A. Goldoni, R. Larciprete, L. Gregoratti, B. Kaulich, M. Kiskinova, Y. Zhang, H. Dai, L. Sangaletti and F. Parmigiani, “X-ray photoelectron microscopy of the C1 score level of free-standing single-wall carbon nanotube bundles”, Applied Physics Letters 80, 2165 (2002).
(86) Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Applied Physics Letters 79, 3155-3157 (2001).
(87) R. Chen, N. Franklin, J. Kong, J. Cao, T. Tombler, Y. Zhang, H. Dai, “Molecular photodesorption from single-walled carbon nanotubes”, Applied Physics Letters 79, 2258-2260 (2001).
(88) Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes”, Journal Physical Chemistry B 105, 11424 (2001).
(89) R. Chen, Y. Zhang, D. Wang, H. Dai, “Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization”, Journal of the American Chemical Society 123, 3838-3839 (2001).
(90) Y. Zhang, H. Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes”, Applied Physics Letters 77, 3015-3017 (2000).
(91) ?Y. Zhang, N. W. Franklin, R. J. Chen, H. Dai, “A study of metal coating on suspended carbon nanotubes: towards elucidating metal-tube interactions”, Chemical Physics Letters 331, 35-41 (2000).
(92) Y. Zhang* and S. Iijima, “Controllable method for fabricating single-wall carbon nanotube tips”, Applied Physics Letters 77, 966-968 (2000).
(93) Y. Zhang* and S. Iijima, “Microstructural evolution of single-walled carbon nanotubes under electron irradiation”, Philosophical Magazine Letters 80, 427-433 (2000).
(94) Y. Zhang*, Z. Shi, Z. Gu, and S. Iijima, “Structure modification of single-wall carbon nanotubes”, Carbon38, 2055-2059 (2000).
(95) K. Suenaga, Y. Zhang, S. Iijima, “Coiled structure of eccentric coaxial nanocable made of amorphous boron and silicon oxide”, Applied Physics Letters 76, 1564-1566 (2000).
(96) Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue, S-L. Zhang, “Large scale synthesis of single-wall carbon nanotubes by arc-discharge method”, Journal of Physics and Chemistry of Solids 61, 1031-1036 (2000).
(97) Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, Q. Gong, H. Li, and S-L. Zhang, “Single-wall carbon nanotube colloids in polar solvents”, Chemical Communications, 461-462 (2000).
(98) H. D. Li, Z. L. Lian, K. T. Yue, Y. Zhan, S. L. Zhang , Z. J. Shi, X. H. Zhou, Y. F. Lian, Z. N. Gu, B. B. Liu, R. S. Yang, H. B. Yang, G. T. Zou, Y. Zhang, and S. Iijima, “Temperature dependence of the Raman spectra of single-wall carbon nanotubes”, Applied Physics Letters 76, 2053-2055 (2000).
(99) Y. Zhang* and S. Iijima, “Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature”, Applied Physics Letters 75, 3087-3089 (1999).
(100) Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue, S-L. Zhang, “Production of single-wall carbon nanotubes at high pressure”, Journal of Physical Chemistry B 103, 8698-8701 (1999).
(101) Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, “Purification of single-wall carbon nanotubes”, Solid State Communications 112, 35-37 (1999).
(102) O. Lourie, H. D. Wagner, Y. Zhang, and S. Iijima, “Dependence of elastic properties on morphology in single-wall carbon nanotubes”, Advanced Materials 11, 931-934 (1999).
(103) Y. Zhang* and S. Iijima, “Elastic response of carbon nanotube bundles to visible light”, Physical Review Letters 82, 3472-3475 (1999).
(104) Y. Zhang*, S. Iijima, Z. Shi, and Z. Gu, “Defects in arc-discharge-produced single-walled carbon nanotubes”, Philosophical Magazine Letters 79, 473-479 (1999).
(105) Z. Shi, Y. Lian, X. Zhou, Z. Gu, L. Zhou, K. T. Yue, S. Zhang, Y. Zhang, S. Iijima, “Mass-production of single-wall carbon nanotubes by arc discharge method”, Carbon 37, 1449-1453 (1999).
(106) Y. Zhang*, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes and carbide nanorods”,Science 285, 1719-1722 (1999).
(107) Y. Zhang*, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon”, Science 281, 973-975 (1998).
(108) Y. Zhang*, H. Gu, and S. Iijima, “Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere”, Applied Physics Letters 73, 3827-3829 (1998).
(109) Y. Zhang and S. Iijima, “Microscopic structure of as-grown single-wall carbon nanotubes by laser ablation”, Philosophical Magazine Letters 78, 139-144 (1998).
(110) Y. Zhang*, H. Gu, K. Suenaga, and S. Iijima, “Heterogeneous growth of B-C-N nanotubes by laser ablation”, Chemical Physics Letters 279, 264-269 (1997).
(111) Y. Zhang, H. Ichinose, M. Nakanose, K. Ito, and Y. Ishida, “Structure modeling of ?3 and ?9 coincident boundaries in CVD diamond thin films”, Journal of Electron Microscopy 48, 245-251 (1999).
(112) K. Kohyama, H. Ichinose, Y. Zhang, Y. Ishida and M. Nakanose, “Tight-binding calculation of the {211} ?=3 boundary in diamond”, Interface Science 4, 157-167 (1997).
(113) H. Ichinose, M. Nakanose, Y. Zhang, “Atomic and electron structure of diamond grain boundaries in a polycrystalline film”, Materials Research Society symposium proceedings: Polycrystalline Thin Films - Structure, Texture, Properties and Applications III, 472, 93-98 (1997).
(114) H. Ichinose, Y. Zhang, Y. Ishida, K. Ito, and M. Nakanose, “Application of spatially resolved EELS on atomic structure determination of diamond grain boundary”, Materials Research Society Symposium Proceedings: Atomic Resolution Microscopy of Surfaces and Interfaces, 466, 273-278 (1997).
(115) Y. Zhang, H. Ichinose, M. Nakanose, K. Ito, and Y. Ishida, “Transmission electron microscopic observation of grain boundaries in CVD diamond thin films”, Journal of Electron Microscopy 45, 436-441 (1996).
(116) Y. Zhang, H. Ichinose, Y. Ishida, K. Ito, and M. Nakanose, “Atomic and electronic structures of grain boundary in chemical vapor deposited diamond thin film”, Materials Research Society Symposium Proceedings: Diamond for Electronic Applications, 416, 355-360 (1996).
(117) Y. Zhang, H. Ichinose, K. Ito, Y. Ishida, and M. Nakanose, “Grain boundary structure and growth sequence of diamond thin film”, Materials Science Forum 204-206, 207-214 (1996).
(118) H. Ichinose, Y. Zhang, Y. Ishida, and M. Nakanose, “Morphology, atomic structure and electronic structure of artificial diamond grain boundary”, JEOL News Vol. 32E, No. 1, p. 16, 1996
(119) Y. Zhang, H. Ichinose, Y. Ishida, and M. Nakanose, “HRTEM of grain boundaries in diamond thin film”, Proceedings of the 2nd NIRIM International Symposium on Advanced Materials (ISAM’95), 271-274 (1995).
(120) Y. Ishida, Y. Zhang, T. Katoh, H. Ichinose, “High resolution transmission electron microscopy of a segregated aluminum grain boundary and of diamond grain boundaries”, Annales de Physique C3 20, 83-89 (1995).
(121) Y. Zhang, S. Fan, C. Shi, Z. Niu, and B. Gu, “In-situ fabrication of YBCO/YSZ/Si thin films by laser ablation”, Physica C 185-189, 1997-1998 (1991).
(122) Y. Zhang, C. Shi, S. Fan, C. Cui, S. Li, J. Li, and M. Liu, “Preparation and critical current measurements of laser ablated YBCO superconducting thin films”, Chinese Physics Letters 8, 416-419 (1991).
(123) Y. Zhang, C. Shi, S. Fan, “In-situ fabrication of superconducting YBCO thin films by PLD method”, Cryogenics and Superconductivity (In Chinese), Vol.19, No.1, p. 45-47, 1991.

专著章节:
(124) Y. Zhang*, “Composite Nanowires”, in Nanowires and Nanobelts, ed. Zhong Lin Wang, Kluwer Academic Publishers, Boston, 2003, Vol. 2,pp. 257-268.
(125) Y. Zhang*, W. Han, G. Gu, “Nanocables and Nanojunctions“, in Encyclopedia of Nanoscience and Nanotechnology, ed. H. S. Nalwa, American Scientific Publishers, 2004, Vol. 6, pp. 61-76.
(126) Y. Zhang*, “Carbon nanotube based nonvolatile memory devices”, in Nanotubes and Nanowires, ed. P. J. Burke, World Scientific Publishing Co., Singapore, 2007, pp.77-93.
(127) N. Teyabi and Y. Zhang, “Ultrahigh density probe-based storage using ferroelectric thin films”, in Ferroelectrics – Applications, ed. M. Lallart, InTech, Rijeka, Croatia, 2011, pp. 157-178.
(128) Y. Zhang and X. Yang, “Lithium/Sulfur Batteries based on Carbon Nanomaterials”, in Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications, ed. W. Lu, J.-B. Naek, and L. Dai, John Wiley & Sons, Inc., Hoboken, New Jersey,  2015, pp. 365-384.