教师

孙家林 教授

清华大学物理系

理科楼C321

北京 100084

电话:010-62772687

传真:010-62781604

jlsun@tsinghua.edu.cn

个人简历

教育背景

1981--1985

黑龙江大学物理系本科生

1985年获理学学士学位

1992--1996

由教育部选派到乌克兰哈尔科夫国立大学物理系在职攻读

博士学位

1996年获数理博士学位

1996--1998

清华大学物理系博士后

1998年出站

工作经历

1985-1996

黑龙江大学物理系

助教、讲师

1996--今

清华大学物理系

讲师、副教授、教授

教学

主要从事本科生高等物理实验、近代物理实验和普通物理实验课的教学和助教博士生的教学指导工作。曾获清华大学“清华之友—优秀教师奖”、 “小林华阳教学优秀奖” 和“洪燕华光优秀青年教师奖”等。作为教学骨干所承担的“基础物理实验课”先后于2004和2005年被评为“北京市高等学校精品课程”和“国家精品课程”。

研究领域

主要从事低维纳米材料制备、复合纳米结构设计及其光学和光电子学性能的实验研究,隶属于低维量子物理国家重点实验室。

主要研究方向:

1. 金属(Au、Ag、Cu、Ni等)纳米材料制备及其物理性质研究。

2. 半导体(Ag2S、CuO、Cu2O、Si、TiO2等)纳米材料制备及其物理性质研究。

3. 基于(碳纳米管、石墨烯等)碳纳米材料的复合纳米结构设计、制备及其物理性质研究

4. 电子/离子导体低维复合纳米结构的设计、制备及其物理性质研究

5. 宽波段快响应纳米光电探测器件的设计、制备及其性能研究

承担的科研项目:

1. 太赫兹量子级联激光器自混合层析成像基础研究(国家自然科学基金重点项目,2018~2021)

2. 电子/离子导体“芯/壳”型低维复合纳米结构的设计、制备及输运性质研究(国家自然科学基金项目,2014~2017)

3. 用固态离子学方法制备银纳米结构表面增强拉曼散射基底的性能及应用研究(教育部博士点博导类基金项目,2013~2015)

4. 基于金属及半导体纳米线(管)异质结构阵列的太赫兹波探测技术原理研究(中国工程物理研究院科学技术基金项目,2012~2014)

5. “纳米异维结构”光电器件的设计、制备及性能研究(国家自然科学基金项目,2012~2015)

6. 表观遗传改变在重大出生缺陷发生中的作用机理研究(科技部973计划项目,2007~2012)

7. 利用近场光学显微镜研究金属纳米结构的纳米等离子体波激发效应(国家自然科学基金项目,2007~2008)

8. 高灵敏实时原位观测方法相关物理、化学基础问题及其在生命科学中的应用(教育部科学技术研究重大项目,2006~2007)

9. 用超离子导体薄膜在直流电场诱导下生长金属纳米线的机理和单根纳米线的物性研究(国家自然科学基金项目,2005~2007)

10. 用光学扫描成像和定域光谱技术研究植物根内皮层的发育(国家自然科学基金项目,2002~2004)

11. 用双色荧光近场显微技术研究细胞信息的跨膜传递(国家自然科学基金项目,1999~2001)

12. 用近场光学共焦显微技术研究蛋白分子跨膜相互作用(国家自然科学基金项目,1998~2002)

13. 铜(银)基复合超离子导体材料晶体薄膜制备研究及应用(北京市自然科学基金项目,1999~2002)

14. 利用激子谱研究含铜(银)及碱金属卤化物的新材料(教育部留学回国人员科研启动基金项目,1997~1998)

奖励、荣誉和学术兼职

清华之友-优秀教师奖 1999

“小林华阳”教学优秀奖 2000

清华大学实验技术成果奖 2002

第十五届全国发明展览会银奖 2005

清华大学班主任工作优秀奖 2005

“洪燕华光”优秀青年教师奖 2007

首都教育系统健康之星奖 2012

主要论著

出版合著学术专著2部, Nature CommunicationsSmallJournal of the American Chemical SocietyACS Applied Materials & Interfaces, Scientific Reports, Applied Physics Letters等刊物发表学术论文150余篇,获得国家发明专利20余项。

部分论著列表:

 

 

        [1] High-Performance     Ultrabroadband Photodetector Based on Photothermoelectric Effect,     ACS Applied Materials & Interfaces, 2022, 14(25), 29077–29086

[2] Local large     temperature difference and ultra-wideband photothermoelectric response of     the silver nanostructure film/carbon nanotube film heterostructure, Nature Communications,     2022, 13(1),1835

[3] Gamma-Ray Radiation Stability of     Mixed-Cation Lead Mixed-Halide Perovskite Single Crystals, Advanced Optical Materials2022,     10(3), 2102069

[4] Measurement of     photothermal conversion efficiency for CNT films utilizing Raman spectrum, Nanomaterials,     2022, 12(7), 1101

[5] γ-Ray Radiation     Hardness of CsPbBr3 Single Crystals and Single-Carrier Devices ACS Applied Materials and Interfaces,2022, 1433),37904-37915

[6] Super-resolved     discrimination of nanoscale defects in low-dimensional materials by     near-field photoluminescence spectral imaging, Optics Letters, 2022,47(16)4227-4230

[7] Transparent     humidity sensor with high sensitivity via a facile and scalable way based     on liquid-phase exfoliated MoO3-x nanosheets, Sensors     and Actuators Reports, 2022, 4,     100092

[8] Unravelling     the Effect of Halogen Ion Substitution on the Noise of Perovskite Single     Crystal Photodetector, The Journal of Physical Chemistry     Letters, 2022, 13, 7831−7837

[9] Stability diagrams     of two optically mutual-injected quantum cascade lasers, AIP Advances, 2021, 11(1), 015320

[10] Oxidized Eutectic     Gallium-Indium (EGaIn) Nanoparticles for Broadband Light Response in     Graphene-Based Photodetector, Materials Advances, 2021, 2,     4414–4422

[11] Ultra-wideband     self-powered photodetector based on suspended reduced graphene oxide with     asymmetric metal contactsRSC Advances, 2021, 11, 19482 – 19491

[12] Electrically     driven transport of photoinduced hot carriers in carbon nanotube fibers, Optics     Letters, 2021, 46(20), 5228-5231

[13] Significantly     enhanced photoresponse of carbon nanotube films modified with cesium     tungsten bronze nanoclusters in the visible to short-wave infrared rangeRSC Advances, 2021, 11,     39646

[14] High responsivity photodetector based on     suspended monolayer graphene/RbAg4I5 composite     nanostructure, ACS Applied Materials & Interfaces, 2020, 12 (45), 50763-50771

[15] Facile fabrication of eutectic gallium-indium alloy nanostructure and     application in photodetection, Nanotechnology, 2020, 31(14), 145703

[16] Strongly enhanced local electromagnetic field in mid-infrared and terahertz     photodetectors employing a hybrid antenna, AIP     Advances, 2020,     10(1), 015048

[17] Thermal Localization Enhanced Fast Photothermoelectric     Response in a Quasi-one-dimensional Flexible NbS3 Photodetector,     ACS     Applied Materials & Interfaces, 2020, 12, 14165−14173

[18] Ultrabroadband,     Fast, and Flexible Photodetector Based on HfTe5     Crystal, Advanced Optical Materials,     2020, 8(20), 2000833

[19] Optically Monitored Electric-Field-Induced Phase     Transition in Vanadium Dioxide Crystal Film, Crystals,     2020, 10(9), 764

[20] Growth mechanism and photoelectric properties of a silver nanowire network     prepared by solid state ionics method, Nanotechnology, 2020, 31(45), 455201

[21] Simple method preparation for ultrathin VO2 thin film and control: nanoparticle morphology and optical transmittance, Japanese Journal of Applied Physics, 2019, 58,

[22] Optical Modulation of     Charge Transport in Layered Graphene System by Superionic Conductor RbAg4I5,     Advanced     Materials Interfaces, 2019,     6, 1900094

[23] Bolometric terahertz detection based on     suspended carbon nanotube fibers Applied Physics Express201912(9)096505

[24] Ultra-broadband     self-powered reduced graphene oxide photodetectors with annealing     temperature-dependent responsivityCarbon, 2019153274-284

[25] Gate-tunable ion-electron hybrid phototransistor based     on a graphene/RbAg4I5 composite, Journal of Materials     Chemistry C, 2019, 7, 13253-13260

[26] Optically mutual-injected terahertz quantum     cascade lasers for self-mixing velocity measurementsOptics Express201927(19)27076-27087

[27] Superionic     Modulation of PMMA-assisted Suspended Few-Layer Graphene Nanocomposite for     High-Performance Broadband Photodetectors, ACS Applied Materials &     Interfaces, 2019, 11, 7, 7600-7606

[28] Tunable positive     and negative photoconductive photodetector based on a gold/graphene/p-type     silicon heterojunction, Journal of Materials     Chemistry C, 2019, 7, 887-896

[29] Self-assembled gold micro/nanostructure     arrays based on superionic conductor RbAg4I5 films, Nanotechnology,     2019, 30(2), 025602

[30] Investigation on crystallization of CH3NH3PbI3     perovskite and its intermediate phase from polar aprotic solvents, Crystal     Growth & Design, 2019, 19, 2, 959-965

[31] High-Performance Stretchable Photodetector based on CH3NH3PbI3     Microwires and Graphene, Nanoscale, 2018, 10, 10538–10544

[32] High-Performance, Ultra-broadband, Ultraviolet to Terahertz Photodetectors     based on Suspended Carbon Nanotube Films, ACS Applied Materials &     Interfaces, 2018, 10, 36304−36311

[33] Broadband Photoresponse Based on A Synergetic Effect of Surface Ions and Plasmon Polaritons, Journal of Materials Chemistry C, 2018, 6, 1199--1205

 [34] Formic Acid: An Accelerator and Quality Promoter     for Nonseeded Growth of CH3NH3PbI3 Single     Crystals, Chemical Communications, 2018, 54,     1049-1052

 [35] A universal top-down approach toward thickness-controllable perovskite     single-crystalline thin films, Journal of     Materials Chemistry C, 2018, 6, 4464--4470

 [36] Nanosecond-Response Speed Sensor Based on Perovskite Single Crystal     Photodetector Array, ACS Photonics, 2018, 5,     3172−3178

 [37] Ultrasensitive Photodetectors Based on     High-Quality LiInSe₂ Single Crystal, Journal of Materials     Chemistry C, 2018, 6(46), 12615-12622

 [38] Enhanced Broadband Photoresponse of Substrate-free Reduced Graphene Oxide     Photodetectors, RSC Advances, 2017, 7 (74), 46536-46544

 [39] Fully Suspended Reduced Graphene Oxide Photodetector with Annealing     Temperature-dependent Broad Spectral Binary Photoresponses, ACS     Photonics, 2017, 4, 2797-2806

 [40] Enhanced Photoelectric Performance of Composite Nanostructures Combining     Monolayer Graphene and a RbAg4I5 Film, Applied     Physics Letters, 2017, 110: 213106

 [41] An     Origami Perovskite Photodetector with Spatial Recognition Ability, ACS     Applied Materials & Interfaces, 2017, 9(12): 10921-10928

 [42] Free-Standing Reduced Graphene Oxide Thin Films with Ultra-High Carrier     Mobility for Fast Photoelectric Devices, Carbon, 2017, 115:     561-570

 [43] Self-Powered Ultra-broadband Photodetector Monolithically Integrated on a     PMN-PT Ferroelectric Single Crystal, ACS Applied Materials & Interfaces,     2016, 8 (48): 32934–32939

 [44] Terahertz-induced photothermoelectric response in graphene-metal contact     structures, J. Phys. D: Appl. Phys. 2016, 49: 425101

 [45] Perovskite     CH3NH3PbI3(Cl) Single Crystals: Rapid     Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density     toward 108 cm–3, Journal of the American Chemical     Society, 2016, 138: 9409-9412

 [46] Rapid, controllable growth of silver nanostructured     surface-enhanced Raman scattering substrates for red blood cell detection, Scientific     Reports, 2016, 6: 24503

 [47] A self-powered photodetector based on CH3NH3PbI3 single     crystal with asymmetric electrodes, Cryst. Eng. Comm., 2016, 18:     4405–4411

 [48] High-stability Organic Red-light Photodetector for Narrowband Applications,     Laser     & Photonics Reviews, 2016, 10(3): 473–480

 [49] High-Performance     Planar-Type Photodetector on (100) Facet of MAPbI3 Single     Crystal, Scientific Reports2015, 5: 16563

 [50] Terahertz photodetector     based on double-walled carbon nanotube macrobundle–metal contacts, Optics     Express, 2015, 23(10): 13348-13357

 [51] Dynamic and Atomic-Scale     Understanding of the Twin Thickness Effect on Dislocation Nucleation and     Propagation Activities by in situ Bending of Ni Nanowires, Acta     Materialia, 2015, 90:     194–203

 [52] Self-powered ultrafast     broadband photodetector based on p-n heterojunctions of CuO/Si nanowire     array, ACS Applied Materials & Interfaces. 2014, 6(23): 20887−20894

 [53] Electron transport in     carbon nanotube/RbAg4I5 film composite nanostructures     modulated by optical field, Applied Physics Letters, 2014,     104: 243111

 [54] Nanowires: Synthesis, Electrical Properties and     Uses in Biological—“Rough     Silver Nanowire, Nanobud and Nanoparticle Substrates: Preparation,     Properties and Use in the SERS Detection of Biomacromolecules”, Nova     Science Publishers, 2014, Chapter 2, pp. 59-88, ISBN:     978-1-63117-855-9

 [55] Effect of microwave     irradiation on carbon nanotube fibers: exfoliation, structural change and     strong light emission, RSC Advances, 2014, 4(30): 15502-15506

 [56] Photocurrent response of     carbon nanotube–metal heterojunctions in the terahertz range, Optics     Express, 2014, 22(5):     5895

 [57] Ultra-Broadband     Photodetector for the Visible to Terahertz Range by Self-Assembling Reduced     Graphene Oxide-Silicon Nanowire Array Heterojunctions, small, 2014, 10(12): 2345–2351

 [58] Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5     thin film composite nanostructures, Journal of Applied Physics,     2014, 115: 044302

 [59] Solution synthesis of Cu2O/Si     radial nanowire array heterojunctions for broadband photodetectors, Materials     Research Express, 2014, 1(1):     015002

 [60] Significantly enhanced     photoresponse in carbon nanotube film/TiO2 nanotube array     heterojunctions by pre-electroforming, Nanotechnology, 2013, 24(46): 465203

 [61] In situ atomic-scale     observation of continuous and reversible lattice deformation beyond the     elastic limit, Nature Communications, 2013, 4: 2413

 [62] Noninvasive three-dimensional live imaging     methodology for the spindles at meiosis and mitosis, Journal of Biomedical Optics     2013, 18(5): 050505

 [63] Significantly enhanced thermoelectric properties of ultralong double-walled     carbon nanotube bundle, Applied Physics Letters, 2013,102(5): 053105

 [64] Fabrication     of copper nanowires by a solid-state ionics method and their surface     enhanced Raman scattering effect, Materials Letters, 2013, 92:     143-146

 [65] Understanding three-dimensional spatial relationship     between the mouse second polar body and first cleavage plane with     full-field optical coherence tomography, Journal of Biomedical Optics,     2013, 18(1): 010503

 [66] Negative and positive photoconductivity modulated by     light wavelengths in carbon nanotube film, Applied Physics Letters,     2012, 101, 123117

 [67] Label-free subcellular 3D live imaging of     preimplantation mouse embryos with full-field optical coherence tomography,     Journal of Biomedical Optics, 2012, 17(7): 070503

 [68] The     wavelength dependent photovoltaic effects caused by two different     mechanisms in carbon nanotube film/CuO nanowire array heterodimensional     contacts, Applied Physics Letters, 2012, 100: 251113

 [69] Fabrication of double-walled carbon nanotube film/Cu2O     nanoparticle film/TiO2 nanotube array heterojunctions for     photosensors, Applied Physics Letters, 2012, 100,     253113

 [70] High magnetic field annealing effect on visible     photoluminescence enhancement of TiO2 nanotube arrays, Applied     Physics Letters, 2012, 100: 043106

 [71] Fabrication of high performance surface enhanced Raman scattering     substrates by a solid-state ionics method. Nanotechnology,     2012, 23: 125705

 [72] Novel photodetectors based on double-walled carbon     nanotube film/TiO2 nanotube array heterodimensional contacts, Nano     Research, 2011, 4(9): 901-907

 [73] Fabrication     of carbon nanotube/silicon nanowire array heterojunctions and their silicon     nanowire length dependent photoresponses, Chemical     Physics Letters, 2011, 501: 461-465

 [74] Fabrication and photoconductivity of macroscopically     long coaxial structured Ag/Ag2S nanowires with different     core-to-shell thickness ratios, Nanotechnology, 2011, 22,     035202

 [75] Negative     photoconductivity induced by surface plasmon polaritons in Ag nanowire     macrobundles, Optics Express, 2010, 18(5): 4066-4073

 [76] Metal-insulator transition in Au-NiO-Ni dual schottky nanojunctions, Nanotechnology,     2009, 20: 455203

 [77] Fabrication of oriented arrays of porous gold microsheaths using     aligned silver nanowires as sacrificial template, Materials Letters, 2009, 63: 148-150

 [78] Field-induced semiconductor-metal transition in     individual NiO–Ni Schottky nanojunction, Applied Physics Letters,     2008, 93: 152107

 [79] Disordered multiwalled carbon nanotube mat for light spot position     detecting Applied Physics A, 2008, 91: 229-233

 [80] The prominent photoinduced voltage effect of     as-prepared macroscopically long Ag core/Ni shell nanoheterojunctions Nanotechnology,     2008, 19: 085703

 [81] Nanotechnology Research: New Nanostructures,     Nanotubes and Nanofibers—“Macroscopic-long     metal nanostructures and corresponding metal chalcogenide semiconductors”, Nova     Science Publishers, 2008, Chapter 9, pp.291-321, ISBN:     978-1-60021-902-3

 [82] Thermo- and photoinduced voltages in Ag     heterodimensional junctions, Applied Physics Letters, 2007, 91(16):     161107

 [83] Oxidized macroscopic-long Cu nanowire     bundle photoconductor, Applied Physics Letters, 2007, 90:     201119

 [84] Carbon nanotube     macrobundles for light sensing Small, 2006, 2: 988-993

 [85] A technique for controlling the alignment     of silver nanowires with an electric field Nanotechnology,     2006, 17: 2378-2380

 [86] Photoinduced currents in carbon nanotube / metal heterojunctions Applied     Physics Letters, 2006, 88: 131107

 [87] Shape-controlled synthesis of silver nanostructures Nanotechnology,     2005, 16: 2412-2414

 [88] Synthesis of copper nanowires under a direct current electric field Nanotechnology,     2005, 16: 2030-2032

 [89] The     effect of an electric field on the phase separation of Ag-doped glass, Materials Science &     Engineering A,     2004, 367: 272-276

 [90] Polarized incandescent     light emission from carbon nanotubes, Applied Physics Letters, 2003,     82 (11): 1763-1765

 [91] First overtone frequency stimulated quartz tuning fork used for     shear-force scanning near-field optical microscopy, Chinese     Physics Letters, 2003, 20(11):     1928-1931

 [92] Observation of the     in-vivo reporter of green fluorescent protein in a plant root by scanning     near-field optical microscopy, Chinese Physics Letters, 2002,     19: 1389-1391

 [93] Fabrication and     application of near-field optical fiber probe, Chinese Physics,     2001, 10(7): 631-635

 [94] Fabrication of large     cone angle optical fiber probe by dynamic chemical etching methodActa Physica Sinica200150(12):     2382-2386

 [95] Екситоннi спектри потрiйних сполук Ме2AgI3, УФЖ.,     1996, 41(4): 471-474

 [96] Низкочастотный оптический спектр тройных соединений     CsCu2I3 и CsAg2I3, ФТТ., 1996, 38(10): 3005-3011

 [97] Оптические     спектры и экситоны в тройных соединенияхCs2AgI3 и CsAg2I3, Опт. и Спектр., 1996, 80(4): 643-647

 [98] Оптический спектр и экситоны     в суперионном проводнике KAg4I5, Функциональные материалы, 1995, 2(4):     438-444

 [99] Оптические спектры и     экситоны в тройных соединениях системы (RbI)1-X(CuI)X, Опт. и     Спектр., 1995,78(3): 436-440

 [100] Exciton spectrum in superionic RbAg4I5     condoctor, Func. Mater., 1994, 1(1), 51-55