教师

undefined

薛平 教授

清华大学物理系

理科楼B-307室

北京 100084

电话:86-10-62784531-197

传真:86-10-62781598

电子邮件地址:xuep@tsinghua.edu.cn

相关链接:https://thurid.lib.tsinghua.edu.cn/scholar/650981

个人简历

教育: 

清华大学现代应用物理系学士学位(1988)

清华大学物理系博士学位(1993)

 

工作经历:

清华大学物理系 讲师(1993-1996)

清华大学物理系 副教授(1996-2000)

清华大学物理系 教授(2000-)

清华大学人事处 副处长 (1999-2003)

美国麻省理工学院电子工程与计算机系、电子学实验室,访问科学家(2001-2002)

清华大学物理系 原子分子纳米科学 教育部重点实验室教授(2000-2011)

清华大学物理系 低维量子物理 国家重点实验室 教授 (2011- )

教学

分子光谱理论(春季学期,1994年)

激光和光谱(春季学期,1998年)

原子分子物理专题选讲(夏季学期,2000年)

近代物理与高新技术物理基础(春季学期,2003年-2007年)

大学物理(春季学期、秋季学期,2004年)

普通物理(春季学期,2006、2007年)

近代物理实验(秋季学期,2010年-)

近代物理新进展(春季学期,2010年-)

激光光谱学——基本概念和仪器(春季学期,1999、2000年、2006年- )

研究领域

l 生物光学:光学相干CT;光学影像新方法和原理、灵敏检测等及其生物医学应用;生物医学光子学等;

    生物光学是目前国际上研究热点领域之一,它将光学和生命科学问题以及数字信息学等多学科融合在一起,是目前生物物理快速发展的交叉研究方向之一。我们研究的重点在于:针对生物、医学中的重要问题,发展无损或微创的多维、微区、高灵敏探测及光学成像的新原理和方法。在此基础上,将其结合与集成,推广应用于实际应用。具体研究方向:

² 散射介质中光子扩散传播特性研究

² 光学相干层析和多普勒成像等及其生物医学应用研究

² 激光相干遥感及成像技术研究

² 相干显微成像和光谱成像及应用研究

² 光纤器件、微型光机电器件和系统的应用研究


l 激光光谱学:激光与原子相互作用;激光原子冷却;原子高激发态;强耦合等离子体研究等;

    激光与原子相互作用是原子物理学的重要研究领域之一。我们的工作主要在基于激光的复杂原子双电子高激发态研究及库仑多体问题。在此基础上,利用激光原子冷却方法,研究超冷原子高激发态的特性和动力学过程,进一步研究少体原子过渡到凝聚态物质特性,极端条件下的谱学和动力学,以及与量子信息和等离子体物理相关的交叉研究。具体研究方向:

² 原子与激光相互作用过程

² 原子高激发态的动力学行为和理论研究

² 激光原子冷却及冷原子的高激发态

² 原子干扰态的研究

² 原子、分子及纳米团簇材料的关联效应及动力学过程


l 激光物理:超快、扫频、光纤激光器先进激光技术及应用等;

    激光物理是光物理的重要研究内容之一。我们感兴趣的工作主要是基于和上述两项研究内容所相关联的超快、扫频、光纤激光器等的研究。


l 光学信息处理:利用光子代替电子,进行大数据的高速运算。

    光学信息处理是目前信息大数据时代高速运算处理的重要研究方向之一。我们感兴趣的研究主要在于通过光学方法,对于海量光信息进行运算处理,以获得速度高于目前电子计算机的运算速度极限的方法。

奖励、荣誉和学术兼职

获奖:

l “极细微尺度超灵敏谱学及其应用”,教育部科技进步二等奖,1999

l “原子分子测控的谱学基础”,北京市科委科技进步二等奖, 2002

 

现任学术兼职:

l 公安部物证鉴定中心,学术委员 (2018至今)

l 中国物理学会科普委员会,副主任(2012-2023)

l 原子分子物理系学报,编委(2028-2016)

l Chinese Science Bulletin,编委 (2008-2013)

l Photonics,Topic Editor(2019-2022)

l 清华大学-创律 前沿科学研究中心 副主任(2012-2021)

l 清华大学 国际纳米光电子学研究中心 副主任(2018-2020)

主要论著

https://thurid.lib.tsinghua.edu.cn/scholar/650981

发表研究论文160余篇,专利10余项,著作3本,在国内外学术会议作邀请报告几十次。近期论文如下:

1"High-speed k-linear swept laser using acousto-optic deflectors with Doppler shift compensation for optical coherence tomography," Optics Letters 49, 101 (2024)

2、“Robotic-OCT guided inspection and microsurgery of monolithic storage devices” Nature Communication, 14:5701 (2023)

3“Importance sampling-accelerated simulation of full-spectrum backscattered diffuse reflectance”. Biomedical Optics Express, 2023;14(9):4644-59

4“Size correction and deep image optimization in optical coherence tomography angiography with structural image-assisted common parts extraction method”  J. Biophotonics, e202300259, (2023)

5“Multimodal-based machine learning strategy for accurate and non-invasive prediction of intramedullary glioma grade and mutation status of molecular markers: a retrospective study” BMC Medicine, 21:198, (2023)

6“Vibration measurement with frequency modulation single-pixel imaging” Chinese Optics Letters. 21(1): 011102, (2023)

7、“Polarization-isolated stretched-pulse mode-locked swept laser for 10.3-MHz A-line rate optical coherence tomography” Optics Letters 48(15):4025-8, (2023)

8、“Analysis and simulation of time-of-flight spectrum in Rb+-Rb hybrid trap” Acta Phys. Sin. 72(9): 093401, (2023)

9Optical coherence tomography angiography with adaptive multi-time interval” J.Biophotonics 16(5), e202200340, (2023)

10、“Whole Brain Micro-Vascular Imaging Using Robot Assisted Optical Coherence Tomography Angiography” IEEE Journal of Selected Topics in Quantum Electronics, 29(4):6800209, (2023)

11、“Monte Carlo-based full-wavelength simulator of Fourier-domain optical coherence tomography” Biomedical Optics Express 13(12): 6317-34, (2022)

12、“Tail artifacts removal of three-dimensional optical coherence tomography angiography with common parts extraction method” J. Biophotonics, e202200155, (2022)

13、“Dispersion Measurement with Optical Computing Optical Coherence Tomography Photonics, 9, 48(2022)

14、“Theoretical and experimental study of hybrid optical computing engine for arbitrary-order FRFT” Opt. Express 29(24), 40106-40115 (2021)

15、“Development of High-Performance Optical Coherence Tomography” (invited) Chinese Journal of Lasers, 48(15): 1517001, (2021)

16、“SNR study on Fourier single-pixel imaging” New J. Phys. 23:073025 (2021)

17“High-speed all-optical processing for spectrum”, Opt. Express 29(1), 305-314 (2021)

18“Digital filtering ghost imaging to remove light disturbances” Appl. Opt. 60(4), 809-814 (2021)

19、“Application of Adaptive Optics in Fluorescence Microscope”(Cover Paper Invited, Laser & Optoelectronics Progress, 57(12): 120001. (2020)

20“The Rb+–Rb collision rate in the energy range of 103–104 K” Journal of Physics B-Atomic Molecular and Optical Physics, 53, 135201,(2020)

21“Adaptive ghost imaging” Opt. Express 28(12), 17232-17240 (2020)

22“Fully Automatic Prediction for Efficacy of Photodynamic Therapy in Clinical Port-Wine Stains Treatment: A Pilot Study” IEEE Access Vol.8, 31227-31233, (2020)

23“Ghost network analyzer” New J. Phys. 22, 013040, (2020)

24“Distortion-free frequency response measurements” Journal Of Physics D-Applied Physics 53(39): 000551654000001, (2020)

25“Speckle reducing OCT using optical chopper” Optics Express Vol. 28, No. 3, 4021-4031, (2020)

26“Machine-learning classification of port wine stain with quantitative features of optical coherence tomography image”, IEEE Photonics Journal, 11(6):2952903. (2019)

27“The study on high n Rydberg state of La II”. Acta Physica Sinica. 68(4):043201. (2019)

28“Fluorescence lifetime imaging microscopy and its applications in skin cancer diagnosis”. Journal of Innovative Optical Health Sciences. 12(5): 1930004. (2019)

29“Compressed sensing spectral domain optical coherence tomography with hardware sparse-sampled camera. Optics Letters , 44(12): 2955-2958. (2019)

30“Optical computing optical coherence tomography with conjugate suppression by dispersion”. Optics Letters, 44(8): 2077-2080, (2019)

31“Multi-frame speckle reduction in OCT using supercontinuum pumped by noise-like pulses” Journal of Innovative Optical Health Sciences, 12(1):1950009. (2019)

32“Conjugate transformation for dispersion compensation in optical coherence tomography imaging” IEEE Journal of Selected Topics in Quantum Electronics, 25(1):7100107 (2019)

33“Endoscopic optical coherence tomography with focus adjustable probe” Optics Letters 42(20):4040-3,(2017)

34“All-Fiber-Optics-Based Microwave Photonic Filter With Tunable Center Frequency and Passband Plus Notch” IEEE Photonics Journal Vol. 9, No. 5, 5502708 (2017)

35“Measurement of the Low-Energy Rb+Rb Total Collision Rate in an Ion-Neutral Hybrid Trap”, Chin. Phys. Lett. 34:1 013401 (2017)

36“Optical computing for optical coherence tomography” Scientific Reports 6:37286 (2016) (Featured article 11/26/2016 and Feature of The Week 11/26/2016 in OCT News)

37“Characterization of automotive paint by optical coherence tomography” Forensic Science International 266: 239–244 (2016)

38“A Pure Frequency Tripler Based on CVD Graphene”, IEEE Electron Device Letters 37 : 6, 785-788, (2016)

39“Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses” Laser Phys. Lett. 13: 025101, (2016)

40“Plasmon-Enhanced Emission From CMOS Compatible Si-LEDs With Gold Nanoparticles” IEEE Photonics Technology Letters, 27(22): 2414-2417, (2015)

41“Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source” Journal of Biomedical Optics 20(3), 030503. (2015)

42“Cascade splitting of two atomic energy levels due to multiphoton absorption”, Physical Review A 90, 033811 (2014)

43、“Temperature of the Remaining Cold Atoms after Two-Step Photoionization in an 87Rb Vapor Cell Magneto-Optical Trap” Chin. Phys. Lett. Vol. 31, No. 7 073401,(2014)

44、“The Inversionless Amplification in a Tripod System of 87Rb Atoms in a Magneto-optical Trap” Chin. Phys. Lett.. Vol. 31, No. 4 043201,(2014)

45“Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography” Optics Letters, 39(2): 247-50, (2014) (Featured article 1/2/14 and Feature of The Week 2/14/14 in OCT News and Selected for additional publication in Virtual Journal for Biomedical Optics)

46“Compact piezoelectric transducer fiber scanning probe for optical coherence tomography” Optics Letters, 39(2): 186-8, (2014)  (Featured article 1/2/14 in OCT News and Selected for additional publication in Virtual Journal for Biomedical Optics)

47“Automated Assessment of Epidermal Thickness and Vascular Density of Port Wine Stains OCT Image” Journal of Innovative Optical Health Sciences 7(1): 1350052 (2014)

48、“Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography” Journal of Biomedical Optics 18(1), 010503. (2013). (Won The 2013 OCT News Student Paper Award and Selected for additional publication in SPIE Letters)

49“Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor” Journal of Biomedical Optics 18(8), 086011 (2013). ( Featured article and Feature of The Week 10/13/13 in OCT News)

50"Completely invisible open tunnel for cylindrical metamaterial devices,” Phys. Rev. A 88, 013821 (2013)

51“Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis” Journal of Biomedical Optics 18(5), 050505. (2013). (Featured article 13/5/13 in OCT News and Selected for additional publication in SPIE Letters Virtual Journal)

52“Speckle-constrained variational methods for image restoration in optical coherence tomography” J. Opt. Soc. Am. A 30(5):878-885, (2013)

53"The Probe Transmission Spectra of 87Rb in an Operating Magneto-Optical Trap in the Presence of an Ionizing Laser", Chin. Phys. Lett. 30(4):043201, (2013)

54“Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography” Optics Letters, 37(15) : 3075-7, (2012)

55、“Spectral-domain optical coherence tomography with a Fresnel spectrometer Optics Letters, 37(8) : 1307-9, (2012)

56“Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography”. Journal of Biomedical Optics 17, 070503. (2012) (Feature of The Week 7/22/12 in OCT News and Selected for additional publication in SPIE Letters)

57“Wave Front Division Interferometer Based Optical Coherence Tomography for Sensitivity Optimization”, Optics. Communications. 285, 1589-1592, (2012)

58“Measurement of the photoionization cross section of the 5P3/2 state of rubidium in a vapor-loaded magneto-optic trap” Chinese Physics Letters. 29(1): 013201, (2012)

59“Handheld optical coherence tomography device for photodynamic therapy” Chinese Science Bulletin  57(5) : 450-4, (2012)

60'Imaging of Skin Microvessels with Optical Coherence Tomography: Potential Uses in Port Wine Stains', Experimental and Therapeutic Medicine, 4: 1017-21. (2012)

61“Polarization Degrees for 3p 2P3/2-3s 2S1/2 Transition of C3+ (1s23p) Produced in Collisions of C4+ with He and H2Journal of Physical Society of Japan, 79: 064301,(2010)

62“Imaging port wine stains by fiber optical coherence tomography” Journal of Biomedical Optics, 15(3), 036020, (2010)

63“Dynamics of O6+ + H electron capture in Debye plasmas and properties of resulting O5+(nl) emission spectra” Physical Review A, 82(2):022701,(2010)

64“Polarization degrees of 3p P-2(3/2)-3s S-2(1/2) transition in O5+(1s (2)3p) produced in collisions of O6+ with He and H-2J. Phys. B, 43(18): 185202, (2010)

65“Reconstruction of complementary images in second harmonic generation microscopy” Optics Express, 14(1): 4727-35, (2006)

66“Particle-Fixed Monte Carlo Model for Optical Coherence Tomography”, Optics Express, 13(6): 2182-95, (2005)

67“How to Optimize the OCT image” Optics Express, 9 (1): 24-35, (2001)

68“Atomic triply excited double Rydberg states of lanthanum investigated by selective laser excitation” Physical Review A, 64 (3): art. no. 031402 , (2001)