
罗迪 副教授
清华大学物理系
物理楼W307
北京 100084
电子邮箱:diluo@tsinghua.edu.cn
个人网页:https://diluo28.github.io/diluo.github.io/
个人简历 |
教育背景: 2012-2016 香港大学, 理学士,物理和数学 2016-2018 伊利诺伊大学香槟分校, 物理学硕士 2018-2021 伊利诺伊大学香槟分校, 数学硕士 2016-2021 伊利诺伊大学香槟分校, 物理学博士 工作经历: 2021-2024 麻省理工、哈佛大学 IAIFI Fellow、博士后 2024-2025 加州大学洛杉矶分校 助理教授 2025-至今 清华大学物理系 副教授 |
研究领域 |
AI + Physics,量子多体物理,量子信息与计算 |
奖励、荣誉和学术兼职 |
IAIFI Fellowship The NSF AI Institute for Artificial Intelligence and Fundamental Interactions |
1. Di Luo, Bryan K. Clark, Backflow Transformations via Neural Networks for Quantum Many-Body Wave-Functions, Phys. Rev. Lett. 122, 226401(2019).
2. Di Luo, Giuseppe Carleo, Bryan K. Clark, James Stokes, Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories, Phys. Rev. Lett. 127, 276402 (2021).
3. John M. Martyn, Khadijeh Najafi, Di Luo#, Variational Neural-Network Ansatz for Continuum Quantum Field Theory, Phys. Rev. Lett. 131, 081601 (2023) Editor’s Suggestion.
4. Di Luo†, Zhuo Chen†, Juan Carrasquilla, Bryan K. Clark, Autoregressive Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation, Phys. Rev. Lett. 128, 090501 (2022).
5. Luuk Coopmans†, Di Luo†, Graham Kells, Bryan K. Clark, Juan Carrasquilla, Protocol Discovery for the Quantum Control of Majoranas by Differentiable Programming and Natural Evolution Strategies, PRX Quantum 2, 020332 (2021).
6. Di Luo†, Jiayu Shen†, Rumen Dangovski, Marin Soljačić, QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning, Advances in Neural Information Processing Systems (NeurIPS) 36 (2024) Spotlight.
7. Zhuo Chen, Jacob McCarran, Esteban Vizcaino, Marin Soljačić, Di Luo#, TENG: Time-Evolving Natural Gradient for Solving PDEs with Deep Neural Net, ICML 2024
8. Owen Dugan, Peter Y. Lu, Rumen Dangovski, Di Luo#, Marin Soljačić, Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows, International Conference on Machine Learning (ICML) 2023, 8879-8901.
9. Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen Dugan, Di Luo#, Marin Soljačić, QuanTA: Efficient High-Rank Fine-Tuning of LLMs with Quantum-Informed Tensor Adaptation, 38th Conference on Neural Information Processing Systems (NeurIPS 2024).